Posts tagged Compiler

Introducing AMD’s Next-Gen Fortran Compiler

We are excited to share a brief preview of AMD’s Next-Gen Fortran Compiler, our new open source Fortran complier supporting OpenMP offloading. AMD’s Next-Gen Fortran Compiler is a downstream flavor of LLVM Flang, optimized for AMD GPUs. Our Next-Gen Fortran Compiler enables OpenMP offloading and offers a direct interface to ROCm and HIP. In this blog post you will:

Read more ...


Accelerate PyTorch Models using torch.compile on AMD GPUs with ROCm

PyTorch 2.0 introduces torch.compile(), a tool to vastly accelerate PyTorch code and models. By converting PyTorch code into highly optimized kernels, torch.compile delivers substantial performance improvements with minimal changes to the existing codebase. This feature allows for precise optimization of individual functions, entire modules, and complex training loops, providing a versatile and powerful tool for enhancing computational efficiency.

Read more ...


Reading AMD GPU ISA

For an application developer it is often helpful to read the Instruction Set Architecture (ISA) for the GPU architecture that is used to perform its computations. Understanding the instructions of the pertinent code regions of interest can help in debugging and achieving performance optimization of the application.

Read more ...


Application portability with HIP

Many scientific applications run on AMD-equipped computing platforms and supercomputers, including Frontier, the first Exascale system in the world. These applications, coming from a myriad of science domains, were ported to run on AMD GPUs using the Heterogeneous-compute Interface for Portability (HIP) abstraction layer. HIP enables these High-Performance Computing (HPC) facilities to transition their CUDA codes to run and take advantage of the latest AMD GPUs. The effort involved in porting these scientific applications varies from a few hours to a few weeks and largely depends on the complexity of the original source code. Figure 1 shows several examples of applications that have been ported and the corresponding porting effort.

Read more ...


C++17 parallel algorithms and HIPSTDPAR

The C++17 standard added the concept of parallel algorithms to the pre-existing C++ Standard Library. The parallel version of algorithms like std::transform maintain the same signature as the regular serial version, except for the addition of an extra parameter specifying the execution policy to use. This flexibility allows users that are already using the C++ Standard Library algorithms to take advantage of multi-core architectures by just introducing minimal changes to their code.

Read more ...


GPU-aware MPI with ROCm

MPI is the de facto standard for inter-process communication in High-Performance Computing. MPI processes compute on their local data while extensively communicating with each other. This enables MPI programs to be executed on systems with a distributed memory space e.g. clusters. There are different types of communications supported in MPI including point-to-point and collective communications. Point-to-point communication is the basic communication mechanism in which both the sending process and the receiving process take part in the communication. The sender has a buffer that holds the message and an envelope containing information that will be used by the receiver side (e.g., message tag, the sender rank number, etc.). The receiver uses the information in the envelope to select the specified message and stores it in its receiver buffer. In collective communication, messages can be exchanged among a group of processes rather than just two of them. Collective communication provides opportunities for processes to perform one-to-many and many-to-many communications in a convenient, portable and optimized way. Some examples of collective communications include broadcast, allgather, alltoall, and allreduce.

Read more ...


Register pressure in AMD CDNA™2 GPUs

Register pressure in GPU kernels has a tremendous impact on the overall performance of your HPC application. Understanding and controlling register usage allows developers to carefully design codes capable of maximizing hardware resources. The following blog post is focused on a practical demo showing how to apply the recommendations explained in this OLCF training talk presented on August 23rd 2022. Here is the training archive where you can also find the slides. We focus solely on the AMD CDNA™2 architecture (MI200 series GPUs) using ROCm 5.4.

Read more ...


Finite difference method - Laplacian part 3

11 May, 2023 by Justin Chang, Rajat Arora, Thomas Gibson, Sean Miller, Ossian O’Reilly.

Read more ...


AMD matrix cores

Matrix multiplication is a fundamental aspect of linear algebra and it is an ubiquitous computation within High Performance Computing (HPC) Applications. Since the introduction of AMD’s CDNA Architecture, Generalized Matrix Multiplication (GEMM) computations are now hardware-accelerated through Matrix Core Processing Units. Matrix Core accelerated GEMM kernels lie at the heart of BLAS libraries like rocBLAS but they can also be programmed directly by developers. Applications that are throughput bound by GEMM computation can achieve additional speedups by utilizing Matrix Cores.

Read more ...