Posts tagged HPC

Introducing AMD’s Next-Gen Fortran Compiler

We are excited to share a brief preview of AMD’s Next-Gen Fortran Compiler, our new open source Fortran complier supporting OpenMP offloading. AMD’s Next-Gen Fortran Compiler is a downstream flavor of LLVM Flang, optimized for AMD GPUs. Our Next-Gen Fortran Compiler enables OpenMP offloading and offers a direct interface to ROCm and HIP. In this blog post you will:

Read more ...


Getting to Know Your GPU: A Deep Dive into AMD SMI

17 Sep, 2024 by Matt Elliott

Read more ...


Introducing the AMD ROCm™ Offline Installer Creator: Simplifying Deployment for AI and HPC

Document headings start at H2, not H1 [myst.header]

Read more ...


Seismic stencil codes - part 3

12 Aug, 2024 by Justin Chang and Ossian O’Reilly.

Read more ...


Seismic stencil codes - part 2

12 Aug, 2024 by Justin Chang and Ossian O’Reilly.

Read more ...


Seismic stencil codes - part 1

12 Aug, 2024 by Justin Chang and Ossian O’Reilly.

Read more ...


Graph analytics on AMD GPUs using Gunrock

Graphs and graph analytics are related concepts that can help us understand complex data and relationships. In this context, a graph is a mathematical model that represents entities (called nodes or vertices) and their connections (called edges or links). And graph analytics is a form of data analysis that uses graph structures and algorithms to reveal insights from the data.

Read more ...


TensorFlow Profiler in practice: Optimizing TensorFlow models on AMD GPUs

TensorFlow Profiler consists of a set of tools designed to measure resource utilization and performance during the execution of TensorFlow models. It offers insights into how a model interacts with hardware resources, including execution time and memory usage. TensorFlow Profiler helps in pinpointing performance bottlenecks, allowing us to fine-tune the execution of models for improved efficiency and faster outcomes which can be crucial in scenarios where near-real-time predictions are required.

Read more ...


Reading AMD GPU ISA

For an application developer it is often helpful to read the Instruction Set Architecture (ISA) for the GPU architecture that is used to perform its computations. Understanding the instructions of the pertinent code regions of interest can help in debugging and achieving performance optimization of the application.

Read more ...


AMD in Action: Unveiling the Power of Application Tracing and Profiling

Rocprof is a robust tool designed to analyze and optimize the performance of HIP programs on AMD ROCm platforms, helping developers pinpoint and resolve performance bottlenecks. Rocprof provides a variety of profiling data, including performance counters, hardware traces, and runtime API/activity traces.

Read more ...


Application portability with HIP

Many scientific applications run on AMD-equipped computing platforms and supercomputers, including Frontier, the first Exascale system in the world. These applications, coming from a myriad of science domains, were ported to run on AMD GPUs using the Heterogeneous-compute Interface for Portability (HIP) abstraction layer. HIP enables these High-Performance Computing (HPC) facilities to transition their CUDA codes to run and take advantage of the latest AMD GPUs. The effort involved in porting these scientific applications varies from a few hours to a few weeks and largely depends on the complexity of the original source code. Figure 1 shows several examples of applications that have been ported and the corresponding porting effort.

Read more ...


C++17 parallel algorithms and HIPSTDPAR

The C++17 standard added the concept of parallel algorithms to the pre-existing C++ Standard Library. The parallel version of algorithms like std::transform maintain the same signature as the regular serial version, except for the addition of an extra parameter specifying the execution policy to use. This flexibility allows users that are already using the C++ Standard Library algorithms to take advantage of multi-core architectures by just introducing minimal changes to their code.

Read more ...


Programming AMD GPUs with Julia

Julia is a high-level, general-purpose dynamic programming language that automatically compiles to efficient native code via LLVM, and supports multiple platforms. With LLVM, comes the support for programming GPUs, including AMD GPUs.

Read more ...


Affinity part 2 - System topology and controlling affinity

In Part 1 of the Affinity blog series, we looked at the importance of setting affinity for High Performance Computing (HPC) workloads. In this blog post, our goals are the following:

Read more ...


Affinity part 1 - Affinity, placement, and order

Modern hardware architectures are increasingly complex with multiple sockets, many cores in each Central Processing Unit (CPU), Graphical Processing Units (GPUs), memory controllers, Network Interface Cards (NICs), etc. Peripherals such as GPUs or memory controllers will often be local to a CPU socket. Such designs present interesting challenges in optimizing memory access times, data transfer times, etc. Depending on how the system is built, hardware components are connected, and the workload being run, it may be advantageous to use the resources of the system in a specific way. In this article, we will discuss the role of affinity, placement, and order in improving performance for High Performance Computing (HPC) workloads. A short case study is also presented to familiarize you with performance considerations on a node in the Frontier supercomputer. In a follow-up article, we also aim to equip you with the tools you need to understand your system’s hardware topology and set up affinity for your application accordingly.

Read more ...


Sparse matrix vector multiplication - part 1

3 Nov, 2023 by Paul Mullowney.

Read more ...


Jacobi Solver with HIP and OpenMP offloading

15 Sept, 2023 by Asitav Mishra, Rajat Arora, Justin Chang.

Read more ...


Finite difference method - Laplacian part 4

18 Jul, 2023 by Justin Chang, Thomas Gibson, Sean Miller.

Read more ...


GPU-aware MPI with ROCm

MPI is the de facto standard for inter-process communication in High-Performance Computing. MPI processes compute on their local data while extensively communicating with each other. This enables MPI programs to be executed on systems with a distributed memory space e.g. clusters. There are different types of communications supported in MPI including point-to-point and collective communications. Point-to-point communication is the basic communication mechanism in which both the sending process and the receiving process take part in the communication. The sender has a buffer that holds the message and an envelope containing information that will be used by the receiver side (e.g., message tag, the sender rank number, etc.). The receiver uses the information in the envelope to select the specified message and stores it in its receiver buffer. In collective communication, messages can be exchanged among a group of processes rather than just two of them. Collective communication provides opportunities for processes to perform one-to-many and many-to-many communications in a convenient, portable and optimized way. Some examples of collective communications include broadcast, allgather, alltoall, and allreduce.

Read more ...


Register pressure in AMD CDNA™2 GPUs

Register pressure in GPU kernels has a tremendous impact on the overall performance of your HPC application. Understanding and controlling register usage allows developers to carefully design codes capable of maximizing hardware resources. The following blog post is focused on a practical demo showing how to apply the recommendations explained in this OLCF training talk presented on August 23rd 2022. Here is the training archive where you can also find the slides. We focus solely on the AMD CDNA™2 architecture (MI200 series GPUs) using ROCm 5.4.

Read more ...


Finite difference method - Laplacian part 3

11 May, 2023 by Justin Chang, Rajat Arora, Thomas Gibson, Sean Miller, Ossian O’Reilly.

Read more ...


Introduction to profiling tools for AMD hardware

Getting a code to be functionally correct is not always enough. In many industries, it is also required that applications and their complex software stack run as efficiently as possible to meet operational demands. This is particularly challenging as hardware continues to evolve over time, and as a result codes may require further tuning. In practice, many application developers construct benchmarks, which are carefully designed to measure the performance, such as execution time, of a particular code within an operational-like setting. In other words: a good benchmark should be representative of the real work that needs to be done. These benchmarks are useful in that they provide insight into the characteristics of the application, and enables one to discover potential bottlenecks that could result in performance degradation during operational settings.

Read more ...


AMD Instinct™ MI200 GPU memory space overview

The HIP API supports a wide variety of allocation methods for host and device memory on accelerated systems. In this post, we will:

Read more ...


AMD ROCm™ installation

AMD ROCm™ is the first open-source software development platform for HPC/Hyperscale-class GPU computing. AMD ROCm™ brings the UNIX philosophy of choice, minimalism and modular software development to GPU computing. Please see the AMD Open Software Platform for GPU Compute and ROCm Informational Portal pages for more information.

Read more ...


Finite difference method - Laplacian part 2

4 Jan, 2023 by Justin Chang, Rajat Arora, Thomas Gibson, Sean Miller, Ossian O’Reilly.

Read more ...


Finite difference method - Laplacian part 1

14 Nov, 2022 by Justin Chang, Rajat Arora, Thomas Gibson, Sean Miller, Ossian O’Reilly.

Read more ...


AMD matrix cores

Matrix multiplication is a fundamental aspect of linear algebra and it is an ubiquitous computation within High Performance Computing (HPC) Applications. Since the introduction of AMD’s CDNA Architecture, Generalized Matrix Multiplication (GEMM) computations are now hardware-accelerated through Matrix Core Processing Units. Matrix Core accelerated GEMM kernels lie at the heart of BLAS libraries like rocBLAS but they can also be programmed directly by developers. Applications that are throughput bound by GEMM computation can achieve additional speedups by utilizing Matrix Cores.

Read more ...