AI - Software Tools & Optimizations - Page 3#
Speculative Decoding - Deep Dive
This blog shows the performance improvement achieved by applying speculative decoding with Llama models on AMD MI300X GPUs, tested across models, input sizes, and datasets.
Supercharge DeepSeek-R1 Inference on AMD Instinct MI300X
Learn how to optimize DeepSeek-R1 on AMD MI300X with SGLang, AITER kernels and hyperparameter tuning for up to 5× throughput and 60% lower latency over Nvidia H200
AITER: AI Tensor Engine For ROCm
We introduce AMD's AI Tensor Engine for ROCm (AITER), our centralized high performance AI operators repository, designed to significantly accelerate AI workloads on AMD GPUs
AI Inference Orchestration with Kubernetes on Instinct MI300X, Part 3
This blog is part 3 of a series aimed at providing a comprehensive, step-by-step guide for deploying and scaling AI inference workloads with Kubernetes and the AMD GPU Operator on the AMD Instinct platform
Optimized ROCm Docker for Distributed AI Training
AMD updated Docker images incorporate torchtune finetuning, FP8 support, single node performance boost, bug fixes & updated benchmarking for stable, efficient distributed training
Measuring Max-Achievable FLOPs – Part 2
AMD measures Max-Achievable FLOPS through controlled benchmarking: real-world data patterns, thermally stable devices, and cold cache testing—revealing how actual performance differs from theoretical peaks.
How to Build a vLLM Container for Inference and Benchmarking
This post, the second in a series, provides a walkthrough for building a vLLM container that can be used for both inference and benchmarking.
AI Inference Orchestration with Kubernetes on Instinct MI300X, Part 2
This blog is part 2 of a series aimed at providing a comprehensive, step-by-step guide for deploying and scaling AI inference workloads with Kubernetes and the AMD GPU Operator on the AMD Instinct platform
Understanding Peak, Max-Achievable & Delivered FLOPs, Part 1
Understanding Peak, Max-Achievable & Delivered FLOPs
AI Inference Orchestration with Kubernetes on Instinct MI300X, Part 1
This blog is part 1 of a series aimed at providing a comprehensive, step-by-step guide for deploying and scaling AI inference workloads with Kubernetes and the AMD GPU Operator on the AMD Instinct platform
Getting started with AMD ROCm containers: from base images to custom solutions
This post, the second in a series, provides a walkthrough for building a vLLM container that can be used for both inference and benchmarking.
SGLang: Fast Serving Framework for Large Language and Vision-Language Models on AMD Instinct GPUs
Discover SGLang, a fast serving framework designed for large language and vision-language models on AMD GPUs, supporting efficient runtime and a flexible programming interface.