Posts tagged Fine-Tuning
PyTorch Fully Sharded Data Parallel (FSDP) on AMD GPUs with ROCm
- 09 February 2025
PyTorch Fully Sharded Data Parallel (FSDP) is a data parallelism technique that enables the training of large-scale models in a memory-efficient manner. FSDP achieves this memory efficiency by sharding model parameters, optimizer states, and/or gradients across GPUs, reducing the memory footprint required by each GPU. This enables the training of large-scale models with lower total GPU memory than DDP (Distributed Data Parallel), in which the model weights and optimizer states are replicated across all processes. To learn more about DDP, refer to Distributed Data Parallel (DDP) training on AMD GPU with ROCm.
Best practices for competitive inference optimization on AMD Instinct™ MI300X GPUs
- 29 January 2025
Optimizing LLM performance on GPUs is challenging due to diverse model needs, memory constraints, and balancing latency and throughput. This document examines how hardware utilization, memory and communication bandwidth and scaling, contribute to inference performance, detailing optimal configurations for AMD Instinct™ MI300X GPUs.
Distributed fine-tuning of MPT-30B using Composer on AMD GPUs
- 28 January 2025
Composer, developed by MosaicML, is an open-source deep learning training library built on top of PyTorch, designed to simplify and optimize distributed training workflows. It supports scalable training on multiple nodes and efficiently handles datasets of various sizes. Composer integrates advanced techniques such as PyTorch Fully Sharded Data Parallelism (FSDP), elastic sharded checkpointing, training callbacks, and speed-up algorithms to enhance training performance and flexibility. It closely resembles PyTorch’s torchrun and has demonstrated exceptional efficiency when scaling to hundreds of GPUs.
Quantized 8-bit LLM training and inference using bitsandbytes on AMD GPUs
- 13 November 2024
In this blog post we will cover the bitsandbytes 8-bit representations. As you will see, the bitsandbytes 8-bit representations significantly help reduce the memory needed for fine-tuning and inferencing LLMs. There are many quantization techniques used in the field to decrease a model size, but bitsandbytes offers quantization to decrease the size of optimizer states as well. This post will help you understand the basic principles underlying the bitsandbytes 8-bit representations, explain the bitsandbytes 8-bit optimizer and LLM.int8 techniques, and show you how to implement these on AMD GPUs using ROCm.
Inference with Llama 3.2 Vision LLMs on AMD GPUs Using ROCm
- 23 October 2024
Meta’s Llama models now support multimodal capabilities, expanding their functionality beyond traditional text-only applications. The Llama 3.2 models are available in a range of sizes, including medium-sized 11B and 90B multimodal models for vision-text reasoning tasks, and lightweight 1B and 3B text-only models designed for edge and mobile devices.
Multinode Fine-Tuning of Stable Diffusion XL on AMD GPUs with Hugging Face Accelerate and OCI’s Kubernetes Engine (OKE)
- 15 October 2024
As the scale and complexity of generative AI and deep learning models grow, multinode training, basically dividing a training job across several processors, has become an essential strategy to speed up training and fine-tuning processes of large generative AI models like SDXL. By distributing the training workload across multiple GPUs on multiple nodes, multinode setups can significantly accelerate the training process. In this blog post we will show you, step-by step, how to set-up and fine-tune a Stable Diffusion XL (SDXL) model in a multinode Oracle Cloud Infrastructure’s (OCI) Kubernetes Engine (OKE) on AMD GPUs using ROCm.
Multimodal (Visual and Language) understanding with LLaVA-NeXT
- 26 April 2024
26, Apr 2024 by Phillip Dang.
Unlocking Vision-Text Dual-Encoding: Multi-GPU Training of a CLIP-Like Model
- 24 April 2024
24 Apr, 2024 by Sean Song.
Instruction fine-tuning of StarCoder with PEFT on multiple AMD GPUs
- 16 April 2024
16 Apr, 2024 by Douglas Jia.
Enhancing LLM Accessibility: A Deep Dive into QLoRA Through Fine-tuning Llama Model on a single AMD GPU
- 15 April 2024
15, Apr 2024 by Sean Song.
Enhancing LLM Accessibility: A Deep Dive into QLoRA Through Fine-tuning Llama 2 on a single AMD GPU
- 15 April 2024
15, Apr 2024 by Sean Song.
Scale AI applications with Ray
- 01 April 2024
1, Apr 2024 by Vicky Tsang<vicktsan>, {hoverxref}Logan Grado, {hoverxref}
Eliot Li
Large language model inference optimizations on AMD GPUs
- 15 March 2024
15, Mar 2024 by Seungrok Jung.
Simplifying deep learning: A guide to PyTorch Lightning
- 08 February 2024
8, Feb 2024 by Phillip Dang.
Using LoRA for efficient fine-tuning: Fundamental principles
- 05 February 2024
5, Feb 2024 by Sean Song.
Fine-tune Llama model with LoRA: Customizing a large language model for question-answering
- 01 February 2024
1, Feb 2024 by Sean Song.
Fine-tune Llama 2 with LoRA: Customizing a large language model for question-answering
- 01 February 2024
1, Feb 2024 by Sean Song.
Pre-training BERT using Hugging Face & TensorFlow on an AMD GPU
- 29 January 2024
29, Jan 2024 by Vara Lakshmi Bayanagari.
Pre-training BERT using Hugging Face & PyTorch on an AMD GPU
- 26 January 2024
26, Jan 2024 by Vara Lakshmi Bayanagari.
Pre-training a large language model with Megatron-DeepSpeed on multiple AMD GPUs
- 24 January 2024
24 Jan, 2024 by Douglas Jia.